Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics
نویسندگان
چکیده
BACKGROUND Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection and shows promise for treating other medical conditions associated with intestinal dysbioses. However, we lack a sufficient understanding of which microbial populations successfully colonize the recipient gut, and the widely used approaches to study the microbial ecology of FMT experiments fail to provide enough resolution to identify populations that are likely responsible for FMT-derived benefits. METHODS We used shotgun metagenomics together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from fecal samples of a single FMT donor. We then used metagenomic mapping to track the occurrence and distribution patterns of donor MAGs in two FMT recipients. RESULTS Our analyses revealed that 22% of the 92 highly complete bacterial MAGs that we identified from the donor successfully colonized and remained abundant in two recipients for at least 8 weeks. Most MAGs with a high colonization rate belonged to the order Bacteroidales. The vast majority of those that lacked evidence of colonization belonged to the order Clostridiales, and colonization success was negatively correlated with the number of genes related to sporulation. Our analysis of 151 publicly available gut metagenomes showed that the donor MAGs that colonized both recipients were prevalent, and the ones that colonized neither were rare across the participants of the Human Microbiome Project. Although our dataset showed a link between taxonomy and the colonization ability of a given MAG, we also identified MAGs that belong to the same taxon with different colonization properties, highlighting the importance of an appropriate level of resolution to explore the functional basis of colonization and to identify targets for cultivation, hypothesis generation, and testing in model systems. CONCLUSIONS The analytical strategy adopted in our study can provide genomic insights into bacterial populations that may be critical to the efficacy of FMT due to their success in gut colonization and metabolic properties, and guide cultivation efforts to investigate mechanistic underpinnings of this procedure beyond associations.
منابع مشابه
Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life
BACKGROUND Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterizat...
متن کاملRecovery of the Gut Microbiome following Fecal Microbiota Transplantation
UNLABELLED Clostridium difficile infection is one of the most common health care-associated infections, and up to 40% of patients suffer from recurrence of disease following standard antibiotic therapy. Recently, fecal microbiota transplantation (FMT) has been successfully used to treat recurrent C. difficile infection. It is hypothesized that FMT aids in recovery of a microbiota capable of col...
متن کاملStrain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant
While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins i...
متن کاملFecal Microbiota Transplantation in Liver Diseases and Recent Developments
Introduction: The intestine, as an important part of the human gastrointestinal tract, provides a favorable milieu for the growth and development of a diverse and large population (approximately 1000 species) of bacteria. Currently, the presence of a cohesive relationship between intestinal bacteria and the host is being well studied and identified. According to the available scientific evidenc...
متن کاملCurrent Status and Future Promise of the Human Microbiome
The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017